null

Observer News

GLOBE Eclipse Challenge: Clouds and Our Solar-powered Earth


Energy from the Sun warms our planet, and changes in sunlight can also cause changes in temperature, clouds, and wind. Clouds are ever changing and give you clues and information on what is happening in the atmosphere. Clouds can tell you if air is moving vertically (or upward) when you see cumulus type clouds growing in the distance. Clouds can also tell you which direction the wind is blowing when you see clouds move at different levels in the atmosphere. They can even tell you how much moisture or water vapor is available just by the presence of clouds, especially by the presence of high cirrus clouds.

 

This diagram illustrates the different processes in the atmosphere that are driven by the heat of the Sun: warm air rising and cooling and then forming clouds, and wind changing due to changes in air temperature.

 

 

Let’s look at the process by which clouds form –

 

Clouds form when air cools and water vapor condenses. There are four ways that cause air to rise in our atmosphere, which is necessary to initiate the formation of a cloud.

1) Convection

This process starts when the Sun warms the surface of the Earth. The air right above the surface is warmer than the rest of the air and it starts to rise. If this portion or parcel of air rises enough to cool to the dew point, condensation occurs and a cloud forms. You see this most often on hot summer days when beautiful cumulus towers develop and grow.

Comparison Example: You may have experienced convection when you sat around a campfire, and felt the warmth of the heat coming from right above the fire.

2) Convergence

This process happens when air at the surface comes together or converges and leads to air moving up. These clouds are not puffy cumulus like those seen through convection.

3) Fronts

Weather fronts, like a strong cold front, pushes air upward quite drastically and can produce strong cumulonimbus clouds that can lead to severe weather conditions. Different types of fronts lead to different lifting depending on the conditions. Dry lines* can also produce quite an amount of lifting that can lead to severe weather out in the Southwest.

*Dry lines are similar to a cold or warm front, but instead of being a boundary separating different types of temperatures, it is a boundary separating dry air from moist air. They occur frequently in the Southwest United States (Texas and Oklahoma) when moist air from the Gulf of Mexico meets dry desert air from the Southwest.

 

 

4) Topography

 

Lifting (or the movement of air upward) can also be caused by slopes and mountains. You may have seen how an area that is mostly flat can experience some clouds always around the one area that has some slope. Scientists call this process orographic lifting, meaning the movement of air influenced by mountains in that region. You will always see clouds and even rain developing on the side of the mountain facing the wind or the windward side and it will be very dry on the other side of the mountain, the leeward side.

 

This composite image of thirteen photographs shows the progression of a total solar eclipse, from right to left, at Madras High School in Madras, Oregon on Monday, Aug. 21, 2017. Image Credit: NASA/Aubrey Gemignani https://science.nasa.gov/resource/phases-of-a-total-solar-eclipse

 

 

But, what if you were able to stop or block the Sun from shining? What would happen to the clouds? A total solar eclipse is exactly that, a natural experiment where you stop or block the Sun from shining for a short amount of time. In general, during a solar eclipse, clouds produced by convection will be the most impacted. As the Moon blocks the light from the Sun, the convection process is reduced, resulting in cloud dissipation or the disappearance of clouds. Note that clouds produced due to frontal boundaries, like a strong cold front, will show little to no change.

 

During the upcoming eclipse (08 April 2024), scientists will be looking at cloud and temperature changes to see if there are any variations across the different climate regions the eclipse will impact. This research is being led by NASA scientist Ashlee Autore at NASA’s Langley Research Center in Hampton, Virginia, USA. Ms. Autore has been looking at citizen scientist observations collected during the 2023 annular eclipse that occurred on 14 October 2023 and has been comparing them to nearby automated surface observing system (ASOS) observations. So far, she has been considering how cloud coverage changes during an eclipse. Using the U.S. climate zones, as defined by the International Energy Conservation Code, she divided citizen scientist and ASOS observations into their respective climate zones and noted some initial findings.

 

Of the citizen scientist and ASOS sites that reported no overall cloud change between the beginning and end of the eclipse, the majority saw overcast skies. Clear skies were also likely to remain unchanged during the eclipse. Warmer climate zones (hot-humid, hot-dry) reported the greatest percentage of clear skies that remained clear, while colder climate zones (cold, marine) reported the greatest percentage of overcast skies that remained overcast. The mixed-humid climate zone also reported a high percentage of continuous overcast skies. These cases of continuous clear skies and continuous overcast skies also were among the locations with the best citizen scientist/ASOS agreement, meaning that citizen scientists reported the same cloud conditions as the nearby ASOS sites. In hot-dry climate zones (such as Los Angeles, CA and Carlsbad, NM), ASOS stations had good agreement with citizen scientists reporting continuous clear skies. In the cold climate zones (such as Toledo, OH and Indianapolis, IN), ASOS stations had good agreement with citizen scientists reporting continuous overcast skies. Newark, NJ and Philadelphia, PA, both in the mixed-humid climate zone, also had good agreement with citizen scientists reporting continuous overcast skies.

 

Map displaying locations of citizen scientist and ASOS observation sites that reported no cloud change (black dots), climate zone (see legend), percent totality in increments of 20% (red lines), and eclipse center path (yellow line).

 

 

The upcoming “GLOBE Eclipse Challenge: Clouds and Our Solar-Powered Earth” asks people from all around the world to volunteer and collect cloud observations throughout the day. Participants can collect cloud observations from 15 March to 15 April 2024 and make observations at different times of the day while the Sun is up in the skies. For those experiencing any portion of the solar eclipse on Monday, 8 April 2024, we ask that you collect air temperature and cloud observations at least an hour before and an hour after maximum eclipse for your location. We will use all these observations to study how clouds change throughout the day and how they are impacted by changes in sunlight and temperature (such as by an eclipse). This year’s eclipse will give scientists such as Ashlee more data points, and will allow for further analysis.


About the Authors:

Marilé Colón Robles is the project scientist for NASA GLOBE Clouds based out of the Science Directorate at NASA Langley Research Center with ADENT Systems, Inc. Marilé works with scientists on ways to include citizen science data into research. She also works with students and teachers around the world to engage students in real-world STEM activities and in authentic science through The GLOBE Program.

Ashlee Autore is a data scientist for NASA GLOBE Clouds and a developer for My NASA Data, both based out of the Science Directorate at NASA Langley Research Center with ADENT Systems, Inc. Ashlee analyzes data collected through GLOBE and includes the results in research projects. She also maintains the My NASA Data website, and acts as a subject matter expert for some of the materials on the website.


Watch Marilé and Ashlee discuss the blog post as part of our March 2024 GLOBE Observer Connect session:


Comments

News Sidebar

A graphic showing silhouettes of two people taking observations with their phones. They are standing between water with mosquito larvae in it, grass, trees, and clouds, which represent the tools within the GLOBE Observer app.

View more GLOBE Observer news here.